新規"ハイブリッド" ポリマーナノスフィア積層粒子層状組織体の創製

(埼玉大院理エ¹・岩手大エ²) 〇金子 洋平¹・吉川 貴弘¹・芝崎 祐二²・藤森 厚裕¹

[緒言] 生体膜、天然粘土鉱物、界面活性剤などに代表される層 状組織体は、生命科学から材料化学までを網羅して物質機能発 現を司る特異な配列構造体の象徴である。この観点において微 粒子集積体は、触媒、センサー、量子デバイス等の需要¹⁾に加 え、集積粒子膜を層状組織化することでフォトニック結晶ライ クな光学部材の革新にも熱い注目が集まる。当研究室では、気 /水界面において形成される高分子ナノ微粒子の集積・層状化 への取り組み²⁾を新たにしてきたが、本研究では、異なる発光 能を有する混合単粒子膜を提案し、二次元の粒子混和性・形態 形成に関する知見を得ることを目的とした。

[実験] 試料は、N-vinyl carbazole (NVCz)、2-(perfluorodecyl) ethyl acrylate (FF₁₀EA)、並びに octadecyl acrylate (OA)のラジカル共重 合から得られる三元櫛型共重合体、並びに側鎖にペンチル基を 有する芳香族ポリアミド(PABA₅)を用いた。これらの単独、並 びに混合粒子膜に対し、表面圧-面積(π-A)等温曲線による水面 上の膜挙動評価を行った。固体基板上粒子膜に対しては、原子 間 力 顕 微 鏡 (AFM) による表面形態 観察を行い、加えて

Langmuir-Blodgett(LB)法による積層粒子膜に対しては、その配列構造と 光学特性を out-of-plane X 線回折(XRD)、蛍光スペクトル測定により評 価した。

[結果と考察] 疎水性高分子が気/水界面で形成するナノ粒子集積体は、 LB 法により層状積層することで、高度な c 軸周期性を発現する³⁾。これは楕円球の積層体ながら、可視光の波長程度まで階段状積層すると、 多様な構造色を発色出来る(Fig. 1)。

NVCz:FF₁₀EA:OA = 4:1:1 共重合体は、気水界面でナノ粒子を形成 すると、発光性のカルバゾールリングが、粒子最外層を被覆した状 態を形成すると考えられ、一方で PABA₅界面ナノ粒子は粒子底面に 親水基が局在化した分子配座が考えられている。こうした内部構造 の異なるナノ粒子を、混合粒子膜として形成させると、それぞれの 粒子種同士が凝集したナノサイズの相分離状態が形成される(Fig. 2)。 恐らくこれは、粒子間に働く相互作用の差異に基づくものであろう と推察される。PABA₅ナノ粒子は主に、空気側を向いたアルキル基 間の van der Waals 相互作用, NVCz 系ナノ粒子は、カルバゾール環 同士の π - π 相互作用が、粒子凝集力を主に司っていると推察した。 形成された混合粒子膜の積層体は、個々のポリマーの励起波長に依 存した発光挙動を示し、中でも NVCz 由来の発光バンドは混合膜中 で単独膜のそれ以上に先鋭化する様子を見せ、 π 共役系の密な会合

Figure 1 (a) AFM image of single particle layer on solid, (b) out-of-plane XRD profile of multiparticle layers, (c) illustration of polymer nanosphere multilayered organization, and (d) occurrence of structural color of step-wise multiparticle layers.

Figure 2 AFM images of mixed single particle layer of NVCz:FF₁₀EA:OA = 4:1:1 and PABA₅.

Figure 3 Fluorescence spectra of hybrid multiparticle layered organization ($-: \lambda_{ex} = 232$ nm, ---: 263 nm, ...: 296 nm, ---: 345 nm).

形成が推察された。今後、こうした発光機能と分子配列の相関性を解明に導く予定である。

[参考文献] 1)Yin, J.; Markus R.; Edwin L. T.; Mary C. B., Langmuir, 2012, 28, 5580.

2) Kaneko, Y.; Fujimori, A., Chem. Lett., 2012, 41, 1183.

3) Fujimori, A.; Chiba, S.; Sato, N.; Abe, Y.; Shibasaki, Y., J. Phys. Chem. B, 2010, 114, 1822.

Construction of a Newly-Typed "Hybrid" Polymer Nanosphere Multilayered Organization

<u>Y. KANEKO</u>, T. KIKKAWA, Y. SHIBASAKI, A. FUJIMORI (Saitama Univ., fujimori@fms.saitama-u.ac.jp) The optical properties of "hybrid" multiparticle layered organization consisting of a mixed interfacial single particle layer with the homogeneous height of 3 nm is investigated. By the particle formation of ternary comb copolymer with carbazole units or polyamide backbone having fluorescent emission property, it was guessed that changes in optical behavior of fluorescence are based on the stacking state of π -conjugated groups at an inside of the particles.